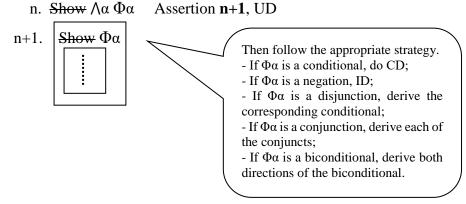


Juliana Lima (jflima@umail.ucsb.edu)
Office Hours: W 1pm-2pm
F 10:50am-11:50am

→ New form of derivation:

<u>Universal Derivation - UD</u> (K&M, p. 143)



- → New Rules of Inference (K&M, p. 141)
- proper substitution (K&M, p. 139): $\Phi\beta$ comes from proper substitution of β for α if $\Phi\beta$ is just like $\Phi\alpha$ except for having <u>free occurrences</u> of β <u>whenever</u> $\Phi\alpha$ has <u>free occurrences</u> of α .

** Where $\Phi\beta$ comes from $\Phi\alpha$ by proper substitution of the term β for the variable α in $\Phi\alpha$ **

$$\underline{EG}$$
 n. $\underline{\Phi\beta}$ $V\alpha \Phi\alpha$ n, EG

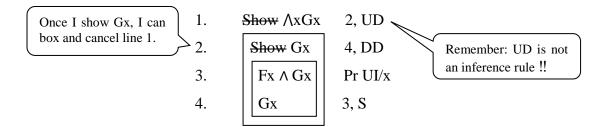
** Where $\Phi\beta$ comes from $\Phi\alpha$ by proper substitution of the term β for the variable α in $\Phi\alpha$ **

- * Where $\Phi\beta$ comes from $\Phi\alpha$ by proper substitution of the term β for the variable α in $\Phi\alpha$; AND
- * β is a variable; AND
- * β is a new variable, i.e., doesn't occur anywhere in the derivation.

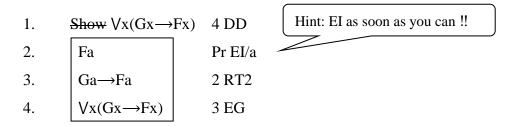
- Examples:

** In order to follow a derivation, you have to read carefully the annotation. Make sure you know which lines and inference rules are being used to justify a line **

Deriv 3.001: $\bigwedge x (Fx \land Gx) : \bigwedge xGx$

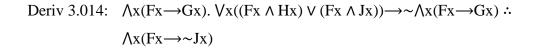


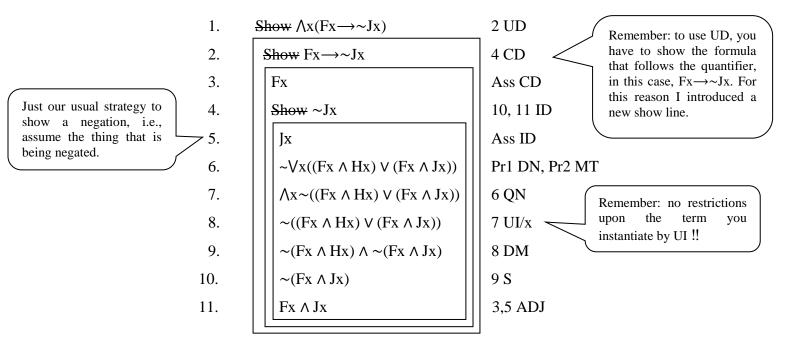
Deriv 3.002: $\forall x Fx : \forall x (Gx \rightarrow Fx)$



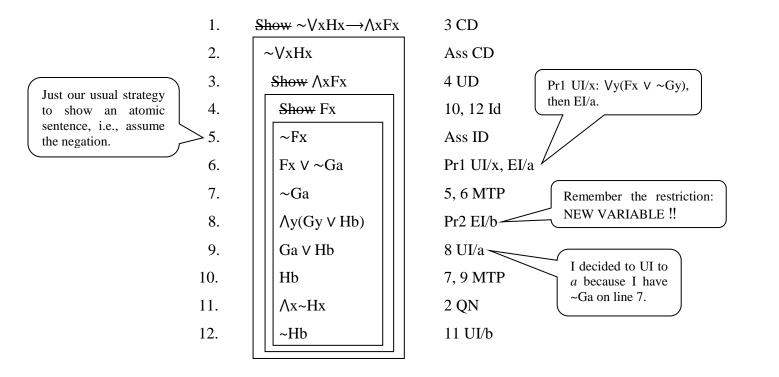
Deriv 3.004: $\bigwedge x(Fx \rightarrow Gx)$. $\bigwedge x(Gx \rightarrow Hx) :: FA \rightarrow \bigvee x(Gx \land Hx)$

1.	$\frac{\text{Show } FA \longrightarrow Vx(Gx \land F)}{\text{Show } FA \longrightarrow Vx(Gx \land F)}$	4x) 3, CD
2.	FA	Ass CD
3.		10, 11 ID
4.	$\sim Vx(Gx \land Hx)$	Ass ID
5.	$\bigwedge x \sim (Gx \wedge Hx)$	4, QN
6.	FA→GA	Pr1, UI/A
7.	GA	2, 6 MP
8.	GA→HA	Pr2, UI/A
9.	HA	6, 7 MP
10.	~(GA ∧ HA)	5 UI/A
11.	GA ∧ HA	7,9 ADJ





Deriv 3.715: $\Lambda x \vee y(Fx \vee Gy)$. $\forall x \wedge y(Gy \vee Hx) : \sim \forall x Hx \longrightarrow \Lambda x Fx$



* For each of the following expression, state whether or not it is a well formed formula. If an expression is a symbolic formula, give the tree of formation. (Examples: K&M, p.121)

Pars 3.002 : $\forall x \sim (Fx)$	Pars 3.011: $\forall x(E \rightarrow Fx)$
Pars 3.012: $\Lambda A(FA \rightarrow \sim GA)$	Pars 3.017: $\Lambda a(Hx \leftrightarrow Gy)$
Pars 3.026: $\sim \Lambda x \sim VyFx \land \sim Gy$	Pars 3.027: $\bigwedge x(FGx \longrightarrow Gy)$
Pars 3.028: $\forall x Fx \land \forall x Gx \longrightarrow \forall x (Fx \land Gx)$	Pars 3.030: $\forall x (P \rightarrow \land x \sim Qx)$

* Determine which inference rule, if any, the following arguments instantiate:

Recog 3.001:
$$\bigwedge x(Fx \rightarrow Gy)$$
 Recog 3.002: Gx
 $\bigwedge xGx$

Recog 3.004: $\bigvee yGy$
 GA

Recog 3.006: $\bigvee xGy$
 Gz

Recog 3.007: $\bigwedge x \bigvee y(Fx \rightarrow Gy \lor Hx)$
 $\bigvee y(FA \rightarrow Gy \lor HA)$

Recog 3.011: $FA \rightarrow GA$
 $\bigvee y(Fy \rightarrow Gy)$

Recog 3.018: $(\bigwedge xFx \rightarrow \bigvee y(Hy \lor Hx))$
 $FB \rightarrow \bigvee y(Hy \lor HB)$

Recog 3.020: $\bigvee x(FA \land Gz) \rightarrow \bigvee xHx \lor GA$
 $\bigvee x(\bigvee xFx \rightarrow FA \lor \bigwedge xGx)$

Recog 3.030: $\bigwedge x(Fx \rightarrow \bigvee y(FB \land Gy))$
 $\bigvee x(\bigvee xFx \rightarrow FA \lor \bigwedge xGx)$

Recog 3.030: $\bigwedge x(Fx \rightarrow \bigvee y(FB \land Gy))$
 $\bigwedge x(Fx \rightarrow \bigvee z \lor y(Fz \land Gy))$

→ Do as many derivations as you can on the software !!